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LETTER TO THE EDITOR 

On the connection between irregular trajectories and the 
distribution of quantum level spacings 

H-D Meyer, E Haller, H Koppel and L S Cederbaum 
Theoretische Chemie, Physikalisch-Chemisches Institut, Universitat Heidelberg, D-6900 
Heidelberg, West Germany 

Received 27 July 1984 

Abstract. For a model system the distribution of spacings between adjacent levels in 
specified intervals of the energy spectrum are compared with a semiclassical distribution. 
This distribution (Berry and Robnik) depends on the size of the phase space volume filled 
with irregular trajectories. Good agreement is found between quantal and semiclassical 
spacing distributions. In particular, the transition from regularity to irregularity observed 
in the quantum calculation (Haller er a / )  is well reproduced by the semiclassical results. 

In classical Hamiltonian systems there exists a well defined distinction between regular 
(quasiperiodic) and irregular (chaotic) motion (Berry 1978). Considerable effort has 
been devoted to defining and observing irregularity (Percival 1973) for quantal systems, 
but the phrase ‘quantum chaos’ refers to a still rather undefined phenomenon. Evidence 
of irregularity, however, can be found in, for example, the nodal pattern of the 
wavefunctions (McDonald and Kaufman 1979, Stratt et a1 1979), the overlap of the 
eigenvectors with those of a zero-order Hamiltonian (Nordholm and Rice 1974, Hose 
and Taylor 1982) ; the sensitivity of energy eigenvalues to small perturbations (Pom- 
phrey 1974, Percival 1977, h l l e n  and Edmonds 1981) and via the statistical analysis 
of fluctuations in spectral sequences (McDonald and Kaufman 1979, Buch et al 1982, 
Haller er a1 1984). Here we concentrate on the last phenomenon and will show that 
(at least for the Hamiltonian investigated) there exists a strong correlation between 
the distribution of nearest-neighbour level spacings and the size of the phase space 
volume filled with irregular trajectories. 

The level spacing distribution of a completely regular (i.e. integrable) system 
assumes a Poisson-like form in the semiclassical limit (Berry and Tabor 1977). A 
completely irregular system, on the other hand, shows a Wigner-like level spacing 
distribution as found by many numerical experiments (see e.g. McDonald and Kaufman 
1979) as well as conjectured by Pechukas (1983). A mixture of these two distributions 
should be observed if the corresponding classical system has regions of both regularity 
and irregularity. Berry and Robnik (1984) conjectured that the energy levels consist 
of two separate sequences, one being Poisson distributed, the other being Wigner 
distributed. The relative weight of these two distributions is assumed to be the Liouville 
measure of the region in phase space filled with regular and irregular trajectories, 
respectively. The superposition of the two level sequences, neglecting any interaction 
between them, yields the distribution 

P ( q ,  S)=exp[-(l-q)S+t.rrq2SZ]{1 -q2+$.rrq3S-(1 - q 2 ) R ( q S ) }  (1) 
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In (1) S denotes the level spacing (the average level spacing being normalised to unity) 
and q denotes a parameter which allows P ( q ,  S) to interpolate between the Poisson 
distribution ( q  = 0) 

P ( O ,  S) =e-”, (3a )  

P (  1, S) = frs e-ws2’4. (36) 

and the Wigner distribution ( q  = 1) 

The parameter q is amenable to classical mechanics. It is the Liouville measure 
of the irregular region divided by the measure of the energy shell: 

where y = (x,, . . . , xF, p l , .  . . , p F )  denotes a point in phase space. (We are assuming 
F degrees of freedom.) The symbol ,y denotes the characteristic function on the 
irregular phase space volume, i.e. x(y) = l(0) if an irregular (regular) trajectory runs 
through the phase space point y. 

It is the aim of this letter to clarify if there is indeed such a simple direct connection 
between the quantal level spacing distribution and classical mechanics. For this purpose 
we consider a model system of two harmonic oscillators with equal frequencies coupled 
by a quartic term in the coordinates 

H = f( p’x + p ;  +xz +y’) +4kx2y2. ( 5 )  

Pullen and Edmons (1981) were the first to study this Hamiltonian both classically 
and quantally. The quantal aspect of the present investigation, i.e. the diagonalisation 
of large secular matrices and the evaluation of the nearest-neighbour distributions 
P(S), was discussed by some of us previously (Haller et a1 1984). In that article we 
have shown that the system ( 5 )  exhibits a gradual transition from a Poisson-like level 
spacing distribution to a Wigner-like distribution if the energy (or the coupling constant 
k) is increased. Such a system is especially suitable for studying a possible connection 
to classical mechanics. The Brody distribution (Brody 1973) which was used by us 
(Haller et a1 1984) is very convenient to analyse the transition from regularity to 
irregularity, but it has no relation to classical mechanics in contrast to distribution (1) 
which is studied here. 

In the following we shall discuss the classical part of the problem and shall begin 
by making a few technical remarks. While running the trajectories we found that the 
usual all purpose integrators are not able to retain sufficient accuracy if the trajectory 
is run for a long time. We have, therefore, written a special routine (Meyer 1984) 
which takes advantage of the simple analytic structure of the particular equations of 
motion to be integrated. The truncation error of the new algoirthm is of 20th order 
(!) in the step size. 

The stability matrix (see e.g. Benettin et a1 1979) 

M , ( t )  = W ( t ) / Q , ( O )  ( 6 )  
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is integrated simultaneously with each trajectory. From this stability matrix we define 
the Lyapunov function (Benettin et al 1976) 

A ( t )  = ln(llM(t) I l l /  t (7) 

where 1 1 .  )I denotes the euclidean norm. For a regular trajectory it can be shown that 
A ( t )  tends to zero (like ln(Pt)/ t)  if time goes to infinity. For irregular trajectories it 
is generally believed that A ( t )  converges to some finite value (‘exponentially separating 
neighbouring trajectories’). At the end of each trajectory it was checked whether A (  t )  
was below or above some carefully chosen threshold. This enabled us to distinguish 
regular from irregular trajectories. 

In order to determine the ratio q appearing in ( 1 )  we considered the surface of 
section (Hinon and Heiles 1964), i.e. the cut through the phase space which is 
characterised by the constraints y = 0 and H(x, y, pxy p,,)  = E. The surface of section 
was divided into rectangular cells of width Ax = Apx = (2E)”’/ 100. We then run 
trajectories for 50 to 250 ‘periods’ and decided-aided by the Lyapunov number- 
whether a particular trajectory was regular or irregular. All cells touched by the 
trajectory were assigned to belong to the regular or irregular regime, respectively. We 
continued to run trajectories until each cell was touched by a least one trajectory. 

Next we define qs as the ratio of the number of cells belonging to the irregular 
regime divided by the total number of (energetically accessible) cells. Except for the 
discretisation error this ratio is given by 

where O denotes the step function and where p,, denotes the positive root of the implicit 
equation E = H(x, 0, px ,  p,,). The ratio qs can be related to q by recognising that qs 
is given by a phase space integral (Meyer 1984) 

where v ( y )  denotes the average frequency with which the trajectory, started at the 
phase space point y, hits the surface of section 

v=lim r-m t - ’  Io‘ d t f j ( t ’ ) O ( j ( t ’ ) ) t 3 ( y ( t ’ ) ) .  (10) 

Comparing (9) with (4) one notices that qs = q if v is constant, or, more generally, if 
the average of v over all irregular trajectories on the energy shell equals the average 
of v over all regular ones. The latter assumption was found to be satisfactorily obeyed 
for the system under investigation and we have identified q with qs. 

The fraction q thus obtained is shown in figure 1 (full curve). It depends solely 
on the product kE as can be shown by a simple analysis of the equations of motion. 
The curve shown in figure 1 should be, of course, perfectly smooth. The kinks in the 
curve are due to the discretisation error introduced by the finite area of the cells of 
the surface of section. The points shown in figure 1 represent the quantum q-values 
found by fitting equation ( 1 )  to the level spacing distribution obtained by diagonalising 
the Hamiltonian (5). The different symbols denote different coupling strengths, k, of 
the quantum calculations. One observes a good overall agreement between the fitted 
q-values and the fraction of phase space filled with irregular trajectories. In particular, 
the transition energy is correctly predicted by classical mechanics. 
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Fig. 1. The full line represents the fraction ofclassical 
phase space filled with irregular trajectories (cf (4)). 
The points give the values obtained by fitting the 
distribution (1  ) to the numerically evaluated quantal 
distributions (compare with Haller er a /  1984). The 
different symbols stand for different couplings 
strengths k: *, 0.001; x, 0.003; f, 0.005; 0, 0.01, 
respectively. The three arrows indicate the three par- 
ticular distributions shown in figure 2. 

5 

Figure 2. The numerically evaluated quantal level 
spacing distribution (histogram) in comparison with 
the distribution ( 1 ) .  The parameter q, determinidg 
the form of the distribution ( l ) ,  is obtained by fitting 
this distribution to the histogram (full curve and (a)  
9 = 2.60, ( 6 1  q = 0.830, (c)  9 = 0.987) or by classical 
mechanics via (4) (broken curve and ( a )  9 = 0.046, 
( 6 )  q=O.898, (c)  9=0.986). The product kE was 
evaluated by choosing the centre of the energy inter- 
val out of which the energy levels were taken to 
represent the energy of this interval. ( a )  kE =0.13, 
105<E<155, 699 levels; ( 6 )  kE=0.6, 175<E< 
225, 679 levels; (c)  kE = 1.5, 125 < E  < 175, 500 
levels. 

To clarify our procedure, we give in figure 2 three examples. The numerically 
evaluated level spacing distribution (histogram) and the distribution ( 1)  where the 
parameter q is obtained by a least squares fit to the histogram (full line) and by classical 
mechanics (broken curve) are shown for comparison. Figure 2 ( a )  demonstrates that 
the large deviations shown in figure 1 at small q-values are not significant. This can 
be understood by recognising that the power expansion of the distribution (1)  starts 
with q2 rather than with q 

P(q ,  ~)=e-’{1  - q 2 ( 1  - ~ S + S ~ / ~ ) + O ( ~ ~ S ) } .  (11) 

A chi-squares statistical analysis (Abramowitz and Stegun 1964) of our data has shown 
that virtually all the deviations of the classically predicted level spacing distribution 
from the quantum one are within the statistical uncertainty of the latter. Although 
deviations from the ‘classically predicted’ level spacing distribution are to be expected 
because of quantum effects (in particular interaction between the two different 
sequences due to tunnelling through dynamical barriers), we are not able to definitely 
identify such deviations because of the limited number of levels available. 
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In conclusion we would like to remark that although the phrase ‘quantum chaos’ 
has no precise meaning we feel that we have demonstrated that, at least for the example 
studied here, there is a very strong correlation between a classical measure of chaos, 
the fraction of phase space filled with irregular trajectories, and a well defined property 
of quantal systems, the nearest-neighbour spacing distribution of energy levels. 

A few words of caution may be appropriate at this point. Firstly, only eigenvalues 
belonging to a single symmetry class of the point group are to be considered if the 
Hamiltonian has geometrical symmetries. Secondly, we emphasise that the secular 
variation of the energy levels has been carefully removed by an unfolding procedure 
(Haller et a1 1983, 1984, Brody et a1 1981) before evaluating the level spacing distribu- 
tion. Thirdly, only levels out of specified energy intervals are considered. In particular, 
we never considered the few lowest eigenvalues of the spectrum. The lowest quantum 
states are always likely to behave anomalously, e.g. show a very regular nodal pattern 
even for completely irregular systems (Shapiro et al 1984). 

While deriving the distribution ( 1 )  it was assumed that classical irregular motion 
implies quantum level repulsion (i.e. a Wigner-like distribution) and that classical regular 
motion implies quantum level clustering (i.e. a Poisson-like distribution). The first 
implication is almost certainly correct (Berry 1984). The second implication, however, 
does not always hold. For example, the ‘desymmetrised square torus billiard’ studied by 
Richens and Berry (1981) shows level repulsion, but does not show exponentially 
separating neighbouring trajectories. More important is probably the oscillator anomaly 
thoroughly discussed by Berry and Tabor (1977). These authors showed that the level 
spacing distribution becomes anomalous if the energy levels are (approximately) equal to 
the levels of a set of uncoupled harmonic oscillators. More generally, the anomaly is 
expected to occur if the energy levels of an integrable system do not depend on the two 
quantum numbers n and m individually (we are assuming two degrees of freedom for the 
sake of simplicity), but rather depend on a linear combination of the quantum numbers 

E,, =f( n + 6m) (12) 
where f denotes some smoothly increasing function and 6 some positive number. The 
anomalous distributions may, for low resolution, roughly look Wigner-like, although 
the system is completely regular. We also observed these anomalous distributions when 
we set the coupling constant k, appearing in our model Hamiltonian ( S ) ,  to a too small 
number. For kE 3 0.13, however, the anomaly is broken. 

Benjamin et a1 (1984) have recently discussed some level spacing distributions 
obtained with the algebraic Hamiltonian method. This Hamiltonian possess by con- 
struction very special constants of motion. In view of equation (12) we believe that 
some of their results are merely a demonstration of the above mentioned oscillator 
anomaly. 
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